DUCATI ENERGIA	REPARTO SISTEMI	VER. 0A del 11/02/2011
	Descrizione Hardware	file DHW-UMD-0A.DOC Pagina 1 di 5

Oggetto: Descrizione UMD

Elaborato: UT Nicola Casadio

Verificato: AQ Fabio Adinolfi

Approvato: CP Enrico Girardi

Approvato: RT Enrico Girardi

Stato del documento: Defintivo

REVISIONI

VER	REV	DATA	MOTIVO	ELABORATO	VERIFICATO	APPROVATO
0	A	11-2-11	Prima versione emessa	Casadio	Adinolfi	Girardi

DUCATI ENERGIA	REPARTO SISTEMI	VER. 0A del 11/02/2011
	Descrizione Hardware	file DHW-UMD-0A.DOC Pagina 2 di 5

Indice

1.	SCOPO	3
2.	CAMPO DI APPLICAZIONE	3
	DESCRIZIONE GENERALE	
	Composizione della colonna UMD	
	Allegati	

DUCATI ENERGIA	REPARTO SISTEMI	VER. 0A del 11/02/2011
	Descrizione Hardware	file DHW-UMD-0A.DOC Pagina 3 di 5

1. SCOPO

Scopo del presente documento e fornire una descrizione di massima della composizione della colonnina, UMD (Unità Movimentazione Dissuasori) e ove possibile anche le caratteristiche tecnico - funzionali degli apparati che compongono la colonnina.

2. CAMPO DI APPLICAZIONE

UMD per varchi RCAV Comune di Bologna

3. DESCRIZIONE GENERALE

La colonna è realizzata in lamiera di ferro spessore 3 mm, verniciata a smalto micaceo colore grigio grafite medio (ral 7011). Forma e dimensioni sono visibili nella seguente figura 2.

Nella figura 1 sono descritti gli elementi presenti sul frontale della colonna.

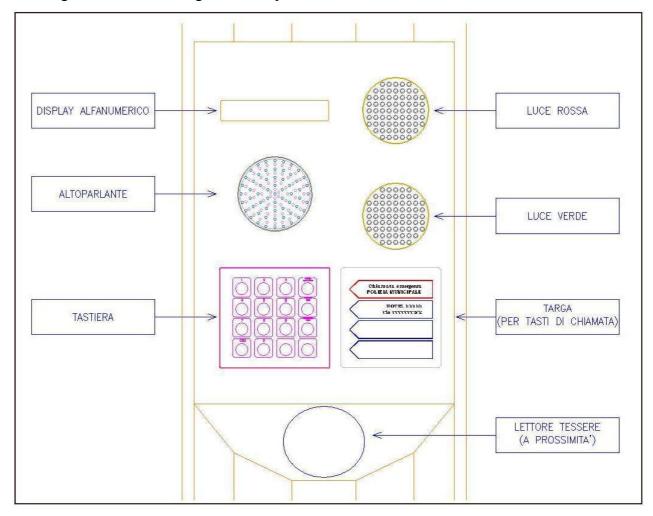


Figura 1 - pannello frontale

DUCATI ENERGIA	REPARTO SISTEMI	VER. 0A del 11/02/2011
	Descrizione Hardware	file DHW-UMD-0A.DOC Pagina 4 di 5

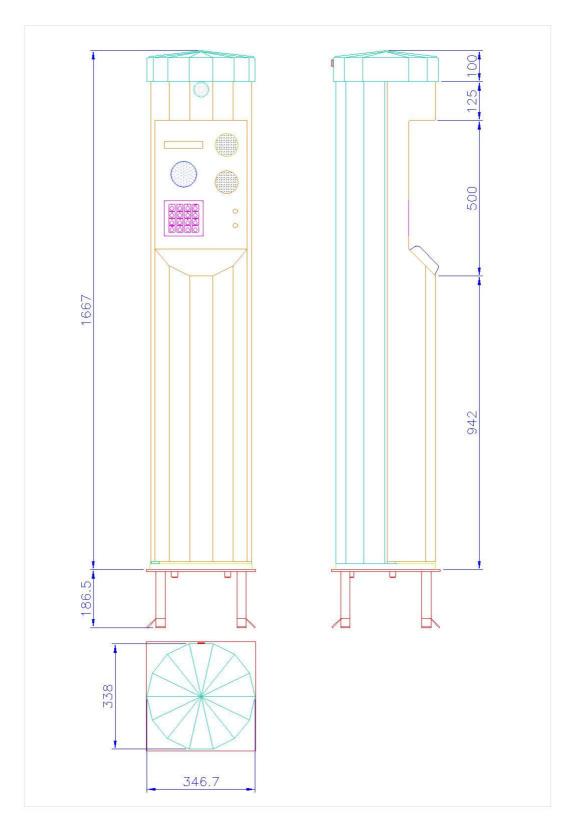


Figura 2 - dimensioni colonna

DUCATI ENERGIA	REPARTO SISTEMI	VER. 0A del 11/02/2011
	Descrizione Hardware	file DHW-UMD-0A.DOC Pagina 5 di 5

4. Composizione della colonna UMD

Codice	descrizione	Scheda tecnica
163082571	KIT RCAV VV	Allegato 1
		RT_UMD_VV_OA
360860218	RCAV RIC. VV.FF.	
42000110	MODULO ANTENNA	
42000170	MODULO SEM/A R	
42000171	MODULO SEM/A V	
44001004	MODULO BT-ECPU/B	Allegato 2
		Ecpu_um_02098-D0-V10
DS001000	DISPLAY LCD MDLS-20268 HT HV L	
FR000040	FILTRO RETE	Allegato 3
		NEF1-10
PW001003	ALIMENTATORE 12 V Power Control sq63-1F-Z	Allegato 4 Sq601f-Xf
PW001004	ALIMENTATORE 12 V Power Control sq66-1F-Z	Allegato 4 Sq601f-X
61XXXMD000030	Modem ISDN Digicom	Allegato 5
	tintoretto cod. 8D5427	Digicom-Tintoretto
61XXX00000830	Scaldiglia Stego HVL031 FAN	Allegato 6
	HEATER	HVL031
SW001003	Interruttore MT diff. Gewiss GW94026	Allegato 7

Tabella 1

5. Allegati

Schede tecniche come elencato in tabella 1

DUCATI	SEZIONE STRUMENTI DI MISURA	nome file: rt_umd_vv_0a.doc
SISTEMI	E INFORMATION TECHNOLOGIES	VERSIONE: 0A del 29/05/08
RELAZIONE TECNICA		Pagina 1 di 5

RELAZIONE TECNICA

Oggetto: UMD BOLOGNA - Modulo Viva Voce

Elaborato: UT / RT Enrico Girardi

Verificato: UT Sergio Antonini

Approvato: AQ Fabio Adinolfi

Stato del documento: **DEFINITIVO**

REVISIONI

VER.	REV.	DATA	MOTIVO	ELABORATO	VERIFICATO	APPROVATO
0	A	29/05/08	Prima versione emessa	E.Girardi	E.Girardi	F.Adinolfi

DUCATI	SEZIONE STRUMENTI DI MISURA	nome file: rt_umd_vv_0a.doc
SISTEMI	E INFORMATION TECHNOLOGIES	VERSIONE: 0A del 29/05/08
RELAZIONE TECNICA		Pagina 2 di 5

INDICE

1.	SCOPO	3
2.	INTRODUZIONE	3
	DESCRIZIONE DELLA FORNITURA	4

DUCATI	SEZIONE STRUMENTI DI MISURA	nome file: rt_umd_vv_0a.doc
SISTEMI	E INFORMATION TECHNOLOGIES	VERSIONE: 0A del 29/05/08
RELAZIONE TECNICA		Pagina 3 di 5

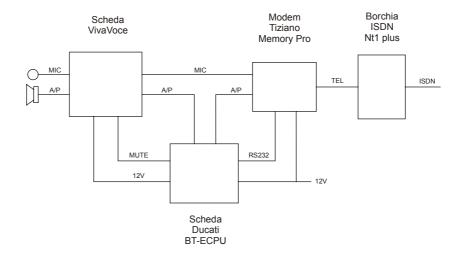
1. SCOPO

Scopo del documento è di descrivere un sistema sostitutivo del circuito di 'vivavoce' delle colonnine di controllo dei fittoni mobili (UMD - Unità Movimentazione Dissuasori) installati per conto del Comune di Bologna.

2. INTRODUZIONE

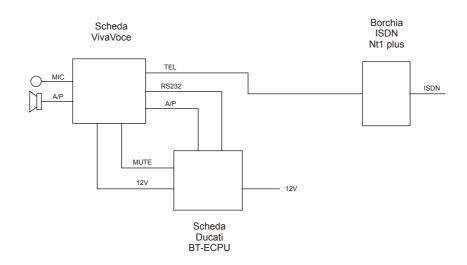
Il sistema di controllo dei fittoni mobili attualmente prodotti da Ducati Sistemi ed installati per il controllo degli accessi nel centro di Bologna, implementa tra l'altro un canale audio per la gestione delle comunicazioni tra l'utente e il centro di controllo.

Per comodità, tale canale audio viene utilizzato in modalità "vivavoce", ovvero senza l'uso di cornette telefoniche ma impiegando, sul lato strada, un altoparlante e un microfono solidali con la colonnina di controllo.


Al fine di limitare al massimo spiacevoli effetti eco e ottimizzare l'amplificazione dell'audio in entrambe le direzioni, è stato utilizzato un apposito circuito elettronico.

Tale circuito si è col tempo rivelato inefficace per una gestione ottimale delle sue funzioni.

DUCATI	SEZIONE STRUMENTI DI MISURA	nome file: rt_umd_vv_0a.doc
SISTEMI	E INFORMATION TECHNOLOGIES	VERSIONE: 0A del 29/05/08
RELAZIONE TECNICA		Pagina 4 di 5


3. Descrizione della fornitura

Nella versione attuale, il canale audio implementato nella colonnina di controllo UMD può essere schematizzato come nello schema seguente:

Dopo un attento esame delle caratteristiche di funzionamento della configurazione attuale, si è deciso per la sostituzione dello specifico circuito di vivavoce (blocco 'Scheda VivaVoce' nello schema) nonchè del modem Tiziano Memory Pro.

Il nuovo circuito, oggetto della presente relazione, implementa, integrandole, le funzioni svolte dai due blocchi rimossi, come sintetizzato nello schema seguente:

DUCATI	SEZIONE STRUMENTI DI MISURA	nome file: rt_umd_vv_0a.doc
SISTEMI	E INFORMATION TECHNOLOGIES	VERSIONE: 0A del 29/05/08
RELAZIONE TECNICA		Pagina 5 di 5

La nuova scheda assolverà quindi sia le funzioni di circuito vivavoce che quelle, attualmente svolte dal modem Tiziano, di interfaccia telefonica 'intelligente', controllata dalla scheda Ducati BT-ECPU via linea seriale e protocollo AT, per la composizione del numero telefonico, impegno della linea, etc.

Il protocollo AT implementato sarà una versione ridotta di quello standard, comprendente tutti i comandi attualmente utilizzati dal software di controllo.

Al fine di rendere il meno invasivo possibile l'intervento di sostituzione del vecchio circuito, saranno utilizzati, ove possibile, connettori e cavi compatibili con l'attuale cablaggio.

Per la realizzazione del circuito saranno utilizzati, tra l'altro, i seguenti componenti:

Atmel AT91SAM7S128 (CPU)
 Microchip 24LC64-I/MS (eeprom)
 Oki ML7037-003 (cancellazione dell'eco)

Clare Litelink III - CPC5620 (interfaccia telefonica)
 Maxim MAX9768 (10W) (amplificatore audio)

BOCONSULT S.p.A. Scheda BT-ECPU

Manuale d'uso 02098-D0-V1.00

Febbraio 2001

Revisioni del documento

Data	Revisione	Emesso da	Approvato da	Note
02/2001	V 1.0	Sergio Tassinari	Enrico Girardi	BT-ECPU rev.A/B - Prima versione emessa.

SOMMARIO

1.	INTR	INTRODUZIONE1		
2.	ARCI	HITETTURA	2	
2.1	Co	ONFIGURAZIONE DELLA CPU	3	
2.	.1.1	RAM	3	
2.	.1.2	Chip Select	3	
2.	.1.3	Interrupt	5	
2.	.1.4	Timer	5	
2.	.1.5	<i>UART</i>	5	
2.	.1.6	Mappa linee di I/O	5	
2.2	DIS	SPLAY E TASTIERA	6	
2.	.2.1	Modalità di accesso alla Tastiera	7	
2.	.2.2	Modalità di accesso al Display LCD	7	
2.3	REA	AL TIME CLOCK & SYSTEM CONTROLLER	7	
2.4	JUN	MPER DI CONFIGURAZIONE	8	
2.5	DE	CODER DTMF	9	
2.6	SEZ	ZIONE MIFARE	9	
2.7	SEZ	ZIONE DI ALIMENTAZIONE	10	
3.	JUMI	PER DI CONFIGURAZIONE	11	
4.	CON	NETTORI	12	
4.1	CN	V1: Tastiera BT200/BT350	12	
4.2	CN	V2: DISPLAY LCD	12	
4.3	CN	V3: Bus di sistema	13	
4.4	CN	V4: Alimentazione	13	
4.5	CN	N5: Ingressi isolati 18	14	
4.6	CN	N6: Ingressi isolati 916	14	
4.7	CN	V7: Ingressi isolati 1724	14	
4.8	CN	N8: USCITE ISOLATE 18	15	
4.9		N9: USCITE ISOLATE 916		
4.10	CN	N10: Tastiera 4x4	15	
4.11	CN	N11: Antenna Mifare	16	
4.12	CN	N12: Fissaggio antenna Mifare	16	
4.13		N13: Ingresso audio		
4.14		N14: SISTEMA VIVAVOCE		
4.15		N15: USCITE AUSILIARIE		
4.16		N16: PORTA SERIALE A		
4.17		N17: PORTA SERIALE B		
4.18		N18: PORTA SERIALE DI SERVIZIO		
4.19	CN	N19: ILLUMINAZIONE DISPLAY	18	
5.	CARA	ATTERISTICHE ELETTRICHE	19	
6.	SCHE	EMI DI MONTAGGIO	22	

Indice delle tabelle

I ABELLA 1 - CONFIGURAZIONE MEMORY CHIP SELECT	3
Tabella 2 - Configurazione Peripheral Chip Select	4
TABELLA 3 - ASSEGNAZIONE LINEE DI INTERRUPT.	5
Tabella 4 - Mappa linee di I/O	6
TABELLA 5 - REGISTRO DI I/O DISPLAY/TASTIERA	6
Tabella 6 - Assegnamento jumper di configurazione	8
Tabella 7 - Configurazioni DTMF	9
Tabella 8 - Assegnamento jumper di configurazione	11
Tabella 9 - Pinout connettore CN1	12
Tabella 10 - Pinout connettore CN2	12
Tabella 11 - Pinout connettore CN3	13
Tabella 12 - Pinout connettore CN4	13
Tabella 13 - Pinout connettore CN5	14
Tabella 14 - Pinout connettore CN6	14
Tabella 15 - Pinout connettore CN7	14
Tabella 16 - Pinout connettore CN8	15
Tabella 17 - Pinout connettore CN9	15
Tabella 18 - Pinout connettore CN10	15
Tabella 19 - Pinout connettore CN11	16
Tabella 20 - Pinout connettore CN13	16
Tabella 21 - Pinout connettore CN14	16
Tabella 22 - Pinout connettore CN15	17
Tabella 23 - Pinout connettore CN16	17
Tabella 24 - Pinout connettore CN17	17
Tabella 25 - Pinout connettore CN18	18
Tabella 26 - Pinout connettore CN19	18
Tabella 27 - Caratteristiche elettriche	19
Indice delle figure	
Figura 1 - Schema a blocchi della scheda BT-ECPU	2
FIGURA 2 - RITARDO DI COMMUTAZIONE INGRESSI: TURN ON. CH1: PIN 1 DI CN5; CH2: PIN 2 DI U3	20
FIGURA 3 - RITARDO DI COMMUTAZIONE INGRESSI: TURN OFF. CH1: PIN 1 DI CN5; CH2: PIN 2 DI U3	20
FIGURA 4 - RITARDO DI COMMUTAZIONE USCITE: TURN ON. CH1: PIN 1 DI CN8; CH2: PIN 5 DI U2	21
FIGURA 5 - RITARDO DI COMMUTAZIONE USCITE: TURN OFF. CH1: PIN 1 DI CN8; CH2: PIN 5 DI U2	21
FIGURA 6 - BT-ECPU-A: SCHEMA DI MONTAGGIO LATO TOP	22
FIGURA 7 - BT-ECPU-A: SCHEMA DI MONTAGGIO LATO BOTTOM	23
FIGURA 8 - BT-ECPU-B: SCHEMA DI MONTAGGIO LATO TOP	24
FIGURA 9 - BT-ECPU-B: SCHEMA DI MONTAGGIO LATO BOTTOM	25

1. INTRODUZIONE

La scheda BT-ECPU è stata appositamente progettata per l'impiego nelle colonnine di controllo dei varchi della Zona a Traffico Limitato di Bologna. Essa integra le funzioni della schede BT-CPU e BT-IO, in modo da ottenere un sistema più affidabile, soprattutto dal punto di vista meccanico.

Come si vedrà, il numero di segnali di ingresso/uscita è stato notevolmente ampliato, per tenere conto anche di una eventuale utilizzazione della scheda in applicazioni di controllo di parcheggi, e sono state invece eliminate funzioni in questo caso inutili, come l'interfaccia IrDA ed il backup a batteria di tutte le funzioni.

É stata prevista la possibilità di montare direttamente sulla scheda il modulo Mifare CM500, oltre ovviamente al più piccolo CM200, in modo da facilitare l'uso di antenne Mifare di grandi dimensioni. La sezione di alimentazione è ora di tipo switching e accetta tensioni di ingresso variabili entro un campo molto ampio con notevole efficienza. Il connettore di espansione è stato ulteriormente ampliato rispetto a quello presente sulla scheda BT-CPU, pur mantenendone la compatibilità.

Si è comunque cercato il più possibile di mantenere la stessa architettura, in modo da semplificare la stesura del software, soprattutto per quanto riguarda il test.

Di seguito sono elencate le caratteristiche principali di questo sistema:

- CPU AMD Am188ER a 18.432MHz;
- Fino a 512kbyte di Flash Eprom + 512kbyte di Ram statica batterizzata;
- 24 ingressi optoisolati a 24Vcc (3 banchi isolati fra loro);
- 16 uscite optoisolate a collettore aperto, con portata minima di 100mA/30Vcc;
- Decoder DTMF, che permette il telecontrollo via telefono;
- Interfaccia per antenna Mifare "piccola";
- Real Time Clock batterizzato;
- Watch Dog;
- Convertitore Analogico/Digitale a 8bit su 3 ingressi commutabili (sul connettore di espansione);
- Interfaccia per display LCD alfanumerico retroilluminato a led e per tastiera a matrice 4x4 e 3x7;
- Alimentazione in corrente continua (8÷35Vcc) o alternata (8÷24Vac);

2. ARCHITETTURA

In figura è rappresentato lo schema a blocchi della scheda BT-ECPU¹. Tutti i componenti sono montati direttamente sul circuito stampato, compresa, eventualmente, anche l'antenna Mifare ANT-6554-A.

BT-ECPU può anche ospitare il modulo Mifare CM500 in piggy-back, in alternativa al modulo minore CM200. In questo caso, l'antenna, di dimensioni maggiori, sarà collegata direttamente al modulo CM500 tramite un cavetto coassiale

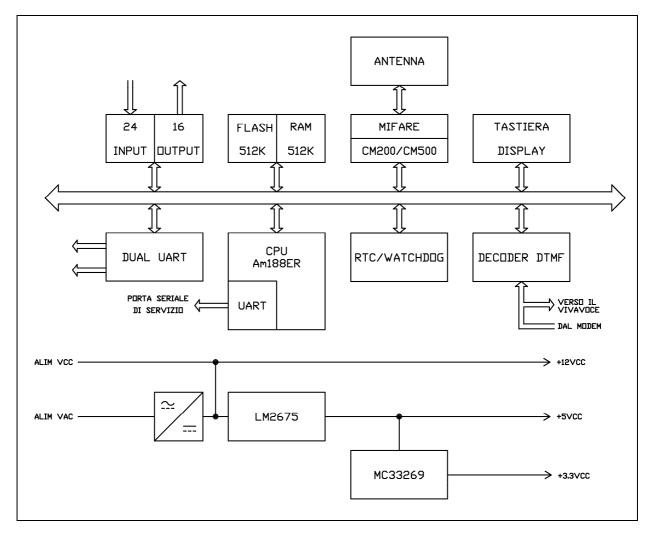


Figura 1 - Schema a blocchi della scheda BT-ECPU

Per maggior chiarezza, lo schema è stato semplificato: non compaiono, ad esempio, il connettore di espansione ed alcune uscite ausiliarie. Le due porte seriali che fanno capo alla doppia UART sono standard RS232, mentre quella di servizio, ottenuta con l'UART interna alla CPU è di tipo TTL e richiede un convertitore di livello esterno per essere connessa ad un PC.

¹ La scheda BT-ECPU Rev. A è esistita solo in forma di prototipo e non è mai stata utilizzata. La versione B è stata velocemente realizzata per rimediare alcuni problemi di layout della prima versione ed aggiunge ad essa, unicamente, un convertitore di tensione a pompa di carica per generare una tensione negativa di polarizzazione del display LCD e permettere, così, il collegamento di display sia di tipo LV che HV.

Qualora si installi, come in figura, un chip di RAM da 512K, non sarà possibile utilizzare i 32K di RAM interni alla CPU. Nel seguito sono descritti in dettaglio i vari blocchi.

2.1 Configurazione della CPU

La CPU è un AMD Am188ER con frequenza di clock pari a 18.432MHz. Dispone internamente di 32K di RAM, di una UART e di tutta una serie di periferiche che devono essere configurate come segue.

2.1.1 RAM

La RAM interna può essere abilitata o meno a seconda della quantità di RAM montata esternamente. Si possono avere tre casi:

- **512K di RAM esterna** (in U23), con i pin 2-3 del jumper JP16 connessi. In questo caso la RAM interna della CPU deve essere disabilitata. É la configurazione di default.
- 128K di RAM esterna (in U23), con i pin 1-2 del jumper JP16 saldati. In questo caso è possibile abilitare la RAM interna mappandola opportunamente. Occorre necessariamente mappare uno dei due banchi a partire dall'indirizzo zero, l'altro di conseguenza.
- Nessuna RAM esterna (in U23). In questo caso è possibile utilizzare la sola memoria presente all'interno della CPU, mappandola ovviamente a partire dall'indirizzo zero. In questo modo però, si perde la possibilità di mantenere i dati in RAM anche a scheda non alimentata.

2.1.2 Chip Select

La seguente tabella riporta la configurazione di default, da impostare per i segnali di chip select di *memoria*. Il chip di RAM U23 è controllato dal segnale LCS*, mentre la Flash è connessa a UCS*.

Chip Select	Configurazione	
UCS*	Range: 512Kbyte (Start: 80000h); Zero Wait States ² , ignorare External Ready.	
MCS0*MCS3*	Disabilitati al reset, non modificare. Utilizzati come segnali di I/O.	
LCS*	Range: 512Kbyte (Start: 00000h); Zero Wait States ² , ignorare External Ready.	
Internal MCS	RAM interna non utilizzata: non abilitare.	

Tabella 1 - Configurazione Memory Chip Select

Per quanto riguarda invece i *Peripheral Chip Select*, di tutti quelli disponibili sono utilizzati con tale funzione solo i PCS0*..PCS3*, mentre PCS5* e PCS6* servono come input. Le funzioni a cui sono adibiti sono riportate in Tabella 2. Ogni PCS è attivo su un range di 256 byte, a partire da un indirizzo base **che deve essere scelto all'interno dello spazio di I/O**.

Poichè le periferiche collegate a questi segnali non occupano mai più di 16 locazioni di memoria, e poichè solo le prime linee di indirizzo vengono decodificate, ogni dispositivo sarà mappato più volte all'interno dei 256 byte ad esso assegnati.

Impostare **3 Wait State** per tutti i PCS.

Boconsult I.d.S. S.p.A.

3

² Data la frequenza di clock della CPU è possibile impostare **zero wait state** su entrambi i chip select utilizzando dispositivi da almeno **100ns** di tempo di accesso.

Indirizzo Base scelto:

PCS Utilizzato	Indirizzo	Descrizione ³	
PCS0*	Base + 00h	Modulo Mifare: Registro DATA (R/W)	
PCS0*	Base + 01h	Modulo Mifare: Registro STACON (R/W)	
PCS0*	Base + 02h	Modulo Mifare: Registro ENABLE (W/O)	
PCS0*	Base + 03h	Modulo Mifare: Registro BCNTS (W/O)	
PCS0*	Base + 04h	Modulo Mifare: Registro BCNTR (W/O)	
PCS0*	Base + 05h	Modulo Mifare: Registro BAUDRATE (W/O)	
PCS0*	Base + 06h	Modulo Mifare: Registro TOC (W/O)	
PCS0*	Base + 07h	Modulo Mifare: Registro MODE (W/O)	
PCS0*	Base + 08h	Modulo Mifare: Registro CRCDATA (R/W)	
PCS0*	Base + 09h	Modulo Mifare: Registro CRCSTACON (R/W)	
PCS0*	Base +0Ah	Modulo Mifare: Registro KEYDATA (W/O)	
PCS0*	Base + 0Bh	Modulo Mifare: Registro KEYSTACON (W/O)	
PCS0*	Base + 0Ch	Modulo Mifare: Registro KEYADR (W/O)	
PCS0*	Base + 0Dh	Modulo Mifare:	
PCS0*	Base + 0Eh	Modulo Mifare: Registro RCODE (W/O)	
PCS0*	Base + 0Fh	Modulo Mifare:	
PCS1*	Base + 100h	Tastiera e display, vedi par. 2.2	
PCS2*	Base + 200h÷2FFh	CS ausiliario su connettore di espansione	
PCS3*	Base + 300h	UART 2692: Mode ch A	
PCS3*	Base + 301h	UART 2692: Status ch A / Clock Select ch A	
PCS3*	Base + 302h	UART 2692: Reserved / Command ch A	
PCS3*	Base + 303h	UART 2692: RX / TX Holding ch A	
PCS3*	Base + 304h	UART 2692: Input Port ch A / Aux Control	
PCS3*	Base + 305h	UART 2692: Interrupt Status / Interrupt Mask	
PCS3*	Base + 306h	UART 2692: Counter Upper / Counter Upper Reg.	
PCS3*	Base + 307h	UART 2692: Counter Lower / Counter Lower Reg.	
PCS3*	Base + 308h	UART 2692: Mode ch B	
PCS3*	Base + 309h	UART 2692: Status ch B / Clock Select ch B	
PCS3*	Base + 30Ah	UART 2692: Reserved / Command ch B	
PCS3*	Base + 30Bh	UART 2692: RX / TX Holding ch B	
PCS3*	Base + 30Ch	UART 2692: Reserved	
PCS3*	Base + 30Dh	UART 2692: Input Port / Output Port Configuration	
PCS3*	Base + 30Eh	UART 2692: Start Counter / Set Output Port Bits	
PCS3*	Base + 30Fh	UART 2692: Stop Counter / Reset Output Port Bits	
PCS3*	Base + 310h	I/O: Lettura Input 1÷8 / Scrittura Output 1÷8	
PCS3*	Base + 311h	I/O: Lettura Input 9÷16 / Scrittura Output 9÷16	
PCS3*	Base + 312h	I/O: Lettura Input 17÷24	

Tabella 2 - Configurazione Peripheral Chip Select

Boconsult I.d.S. S.p.A.

.

³ R/W = Read/Write, R/O = Read Only, W/O = Write Only.

2.1.3 Interrupt

Il sistema utilizza quattro delle cinque linee di interrupt disponibili, assegnate secondo lo schema seguente:

Interrupt	Segnale	Descrizione
INT0	INTRTC	Interrupt da Real Time Clock DS1673 (U22)
INT1	INT2692	Interrupt da UART SCC2692 (U32)
INT2	INTDTMF	Interrupt da decoder DTMF. Indica il riconoscimento di un tono valido
INT3	INTAUX	Interrupt da connettore di espansione CN3

Tabella 3 - Assegnazione linee di interrupt

La linea INTDTMF può anche essere gestita a polling, programmandola come PIO31, input con pullup. La linea INT3 è portata direttamente sul connettore di espansione e conviene, in attesa di un suo utilizzo, disabilitarla. L'ingresso di NMI fa capo ad un circuito a trigger di Schmitt (U24) ed è possibile attivarlo chiudendo il jumper JP18.

2.1.4 Timer

Dei tre timer disponibili, nessuno è forzato ad un utilizzo particolare. Il solo output del timer 0 è portato sul connettore CN15 per poter pilotare eventualmente un buzzer esterno. In questo caso il timer 0 va impostato in modo che ripeta continuamente il suo ciclo, generando così un'onda quadra dalla frequenza prescelta, mentre il buzzer viene attivato commutando lo stato del pin TMROUT0-PIO10 da input con pulldown a "normal operation". Sfruttando il tick di sistema sarà possibile generare toni di frequenza e durata varabili.

I rimanenti pin disponibili di Timer 0 e 1 sono utilizzati come linee di I/O, per cui i timer 1 e 2 sono comunque disponibili per temporizzare il software.

2.1.5 **UART**

La UART interna alla CPU può essere utilizzata sia durante le fasi iniziali di debug del sistema, eventualmente insieme ad un'altra UART esterna connessa al bus di espansione, oppure per diagnostica sul campo o per il download di dati o del codice applicativo.

Per questi ultimi scopi, i pin della seriale della CPU sono portati sui pin del connettore CN18 e sono a livello TTL (è richiesto un convertitore esterno). Inoltre, poichè è possibile, in ogni momento, programmare i pin TXD e RXD per funzionare come linee dati dell'UART oppure come linee di I/O generico, si possono sfruttare queste linee (forzandole inizialmente in un certo stato) per avviare il sistema in un modo particolare di funzionamento, predisponendolo, ad esempio, al download del codice.

2.1.6 Mappa linee di I/O

Alcune funzioni ausiliarie del sistema sono gestite tramite le linee di I/O messe a disposizione direttamente dalla CPU. La tabella che segue elenca tutti questi segnali, la cui funzione sarà spiegata nei paragrafi che seguono.

Nome Pin	Direzione al reset	Stato al reset	Descrizione ⁴
TMRIN1-PIO0	Input, pullup	-	Bit 0 decoder DTMF (DTMF_D0)
TMROUT1-PIO1	Input, pulldown	-	Bit 1 decoder DTMF (DTMF_D1)
PCS6*-A2-PIO2	Input, pullup	-	Bit 2 decoder DTMF (DTMF_D2)
PCS5*-A1-PIO3	Input, pullup	-	Bit 3 decoder DTMF (DTMF_D3)
A19-PIO9	Output	Alto ⁵	Led Software LD1 (Rosso)
TMROUT0-PIO10	Input, pulldown ⁶	-	Comando Buzzer (BUZZER)
TMRIN0-PIO11	Output	Basso	Reset modulo Mifare (RSTMIFR*)
DRQ0-PIO12	Output	Basso	Linea RS display (LCDRS)
DRQ1-PIO13	Output	Alto	Linea WR display (LCDWR*_KCEN*)
MCS0*-PIO14	Output	Basso	Linea EN display (LCDEN)
MCS1*-PIO15	Output	Alto	Riarmo Watch Dog (WDOG*)
SCLK-PIO20	Output	Basso	RTC U22, linea Clock (RTCCLK)
SDATA-PIO21	Input, pullup	-	RTC U22, linea Data (RTCDATA)
SDEN0-PIO22	Output	Basso	RTC U22, linea Enable (RTCEN)
SDEN1-PIO23	Output	Basso	Uscita Ausiliaria 1 su CN15 (AO1)
MCS2*-PIO24	Output	Alto	Abilitazione sistema Vivavoce (VVEN*)
MCS3*-PIO25	Output	Alto ⁵	Led Software LD42 (Verde)
CSEL2*-PIO26	Output ⁷	Basso	Uscita Ausiliaria 2 su CN15 (AO2)
INT4-PIO30	Output	Basso	Controllo illuminazione LCD (LCDLEDON)

Tabella 4 - Mappa linee di I/O

2.2 Display e Tastiera

Come descritto nel paragrafo 2.1.2, l'accesso agli indirizzi selezionati dal PCS1* agiscono sui registri che costituiscono l'interfaccia comune con display LCD e tastiera. Poichè gli indirizzi non sono decodificati all'esterno della CPU, tali registri rispondono (uno in lettura e uno in scrittura) *a qualsiasi indirizzo* compreso nel range di indirizzamento di PCS1*, che è ampio 256 byte.

Nella seguente tabella sono descritti i singoli bit dei due registri.

Bit	Descrizione (READ)	Descrizione (WRITE)
0	Stato tastiera riga #0	Dati display bit #0 / Tastiera colonna #0
1	Stato tastiera riga #1	Dati display bit #1 / Tastiera colonna #1
2	Stato tastiera riga #2	Dati display bit #2 / Tastiera colonna #2
3	Stato tastiera riga #3	Dati display bit #3 / Tastiera colonna #3
4	Stato tastiera riga #4	Dati display bit #4 / Tastiera colonna #4
5	Stato tastiera riga #5	Dati display bit #5 / Tastiera colonna #5
6	Stato tastiera riga #6	Dati display bit #6 / Tastiera colonna #6
7	Stato linea Busy display (bit 7)	Dati display bit #7 / Tastiera colonna #7

Tabella 5 - Registro di I/O Display/Tastiera

Boconsult I.d.S. S.p.A.

6

.

⁴ Fra parentesi è riportato il nome del relativo segnale.

⁵ Livello alto indica led spento, livello basso indica led acceso.

⁶ Questo segnale serve al pilotaggio del buzzer, che si ottiene configurando il pin come pin di uscita del Timer 0 e programmando opportunamente il timer stesso.

⁷ Al power up, questo pin è un input con pullup ed il suo stato, insieme a quello del pin S6-CSEL1*-PIO29, determina il modo di funzionamento del PLL interno alla CPU. La presenza o meno delle resistenze R2 e R3 stabilisce la frequenza di clock.

La condivisione degli stessi registri fra le due periferiche è possibile grazie all'uso di segnali di selezione realizzati sfruttando alcune linee di I/O della CPU. La procedura di accesso è descritta nei paragrafi che seguono.

2.2.1 Modalità di accesso alla Tastiera

La tastiera è organizzata a matrice, con fino a 4 righe per 8 colonne. In realtà sono previsti due connettori per due diversi tipi di tastiera:

- CN10, per una tastiera a matrice da 4 righe per 4 colonne;
- CN1, per una tastiera fino a 3 righe per 8 colonne (in pratica, dedicato alla tastiera realizzata per i terminali BT200/BT350)

Per la selezione delle colonne occorre anzitutto una scrittura del valore opportuno ad un indirizzo qualsiasi compreso nel range di PCS1*. Le uscite del relativo registro devono poi essere abilitate portando a livello basso la linea LCDWR*_KCEN*, che fa capo al pin di I/O PIO13 della CPU (vedi Paragrafo 2.1.6). Ad uscite del registro abilitato, se deve, infine, eseguire una lettura allo stesso indirizzo, determinando così lo stato delle righe e, quindi, dei tasti.

Poichè queste linee di uscita sono condivise con il bus del display LCD, <u>è necessario</u> mantenere a livello basso il segnale di Enable del display (linea LCDEN, PIO14) durante l'accesso alla tastiera.

2.2.2 Modalità di accesso al Display LCD

É possibile collegare su CN2 un display di tipo alfanumerico, dotato di controller compatibile con l'Hitachi HD44780 e, quindi, con le consuete modalità di interfaccia.

Occorre tenere presente che:

- Il dato da scrivere nel display va prima impostato con una scrittura nel registro (ad un indirizzo compreso nel campo di PCS1*), poi le uscite del registro vanno attivate portando a zero la linea LCDWR*_KCEN* (PIO13) e, infine, va fatto un ciclo 0-1-0 sulla linea LCDEN (PIO14).
- Per leggere lo stato del flag Busy (bit 7) del display, occorre prima di tutto portare a livello alto la linea LCDWR*_KCEN* e poi fare una lettura al registro Display/Tastiera, sul bit 7.

Il contrasto (inclinazione) del display può essere regolato per mezzo del trimmer P1.

Inoltre, sui pin 15 e 16 di CN2 e su CN19 è riportata l'alimentazione per l'illuminatore a led del display stesso. Tale alimentazione è prelevata dalla linea principale a 5Vcc regolati con l'interposizione in serie di una resistenza da 5 Ohm, per limitare la corrente a circa 200mA.

2.3 Real Time Clock & System Controller

Il sistema dispone di un orologio in tempo reale batterizzato, integrato all'interno del chip Dallas DS1673-5. Questo dispositivo comunica con la CPU attraverso la classica interfaccia seriale a tre fili tipica degli orologi Dallas e, inoltre, integra al suo interno i seguenti componenti:

• **Non Volatile RAM controller**. Provvede alla protezione dei dati entro la RAM (solo quella esterna alla CPU) al momento della caduta dell'alimentazione.

• **Reset generator**. Genera un impulso di reset della durata minima di **250ms**, eliminando anche i rimbalzi legati all'uso di un tasto a comando manuale.

- **Power Fail reset**. Attiva la linea di reset quando la tensione di alimentazione cade al di sotto della soglia di 4.65V⁸.
- Watch Dog. Quando abilitato (è la condizione di default) provvede a generare un impulso di reset ogni 250 ms, 500 ms oppure 1000ms (selezionabili a software) a meno che non si invii un impulso di retrigger sulla linea WDOG* (vedi Par. 2.1.6).
- Convertitore Analogico/Digitale, che, in questo caso, non viene utilizzato per nessuna funzione particolare. I suoi tre ingressi sono riportati sul connettore di espansione CN3 e sono disponibili per future applicazioni, ad esempio, per misura di temperature o di tensioni di batteria.

Sono presenti tre ingressi separati, con risoluzione di 8 bit e fondo scala pari a 2.55V (10mV/bit). In serie a ciascun ingresso è presente una resistenza di protezione da 1kOhm. Per ogni altra informazione, fare riferimento al relativo Data Sheet Dallas

2.4 Jumper di configurazione

Per scopi di configurazione del software sono stati predisposti un totale di ben 13 (!) jumper, suddivisi in due banchi da 8 e 5 jumper, liberamente utilizzabili per funzioni qualsiasi.

L'unica limitazione nell'uso di questi jumper è legata al loro particolare collegamento. Infatti, il banco da 8 jumper (JP3..10) è connesso alla parte alta del bus multiplexato della CPU, il cui stato viene letto dalla CPU stessa solo al reset, e memorizzato in un registro interno. I rimanenti 5 jumper (JP11..15) sono collegati agli input generici rimasti liberi dell'UART. Anche in questo caso, per non interferire con le normali operazioni di comunicazione dell'UART stessa, è preferibile leggere lo stato di questi jumper solo subito dopo il reset.

L'assegnamento di ciascun jumper è riportato nella seguente tabella.

Jumper	Assegnamento
JP3 - CFGA[0]	CPU pin AO8, bit 8 registro RESCON, offset F6h
JP4 - CFGA[1]	CPU pin AO9, bit 9 registro RESCON, offset F6h
JP5 - CFGA[2]	CPU pin AO10, bit 10 registro RESCON, offset F6h
JP6 - CFGA[3]	CPU pin AO11, bit 11 registro RESCON, offset F6h
JP7 - CFGA[4]	CPU pin AO12, bit 12 registro RESCON, offset F6h
JP8 - CFGA[5]	CPU pin AO13, bit 13 registro RESCON, offset F6h
JP9 - CFGA[6]	CPU pin AO14, bit 14 registro RESCON, offset F6h
JP10 - CFGA[7]	CPU pin AO15, bit 15 registro RESCON, offset F6h
JP11 - CFGB[0]	UART U32 pin IP2, bit 2 registro IPR offset 0Dh (IO Base + 300h + 0Dh)
JP12 - CFGB[1]	UART U32 pin IP3, bit 3 registro IPR offset 0Dh (IO Base + 300h + 0Dh)
JP13 - CFGB[2]	UART U32 pin IP4, bit 4 registro IPR offset 0Dh (IO Base + 300h + 0Dh)
JP14 - CFGB[3]	UART U32 pin IP5, bit 5 registro IPR offset 0Dh (IO Base + 300h + 0Dh)
JP15 - CFGB[4]	UART U32 pin IP6, bit 6 registro IPR offset 0Dh (IO Base + 300h + 0Dh)

Tabella 6 - Assegnamento jumper di configurazione

.

⁸ Anche se la CPU funziona a 3.3V, RAM e Flash sono alimentate a 5V. E' quindi corretto resettare tutto il sistema non appena cade la tensione di alimentazione a 5V

2.5 Decoder DTMF

La scheda ospita un decoder di toni DTMF, allo scopo di poter accettare comandi attraverso una normale linea telefonica. Tale decoder è realizzato mediante il componente Mitel MT8870, che contiene al suo interno tutta la circuiteria necessaria, dallo stadio analogico di ingresso all'interfaccia verso il microprocessore.

Si noti che lo stadio di ingresso di questo decoder NON è adatto ad essere collegato direttamente alla linea telefonica, ma è stato invece progettato per essere connesso all'uscita audio ("speaker") di un modem *voice*.

Il decoder è sempre attivo; non appena una coppia di toni di frequenze e durata corretti viene riconosciuta viene attivato il segnale INTDTMF, connesso all'ingresso INT2 della CPU. Contemporaneamente, sulle linee DTMF_D0..3 (PIO0..3) viene presentata, in parallelo, la configurazione riconosciuta.

Il segnale INTDTMF rimane attivo finchè una coppia di toni corretta è presente all'ingresso. Qualora si passi da una coppia di toni corretta ad un'altra, il segnale INTDTMF esegue comunque una transizione, per cui potrebbe essere conveniente programmare la linea INT2 della CPU per essere sensibile al fronte (positivo) del segnale⁹.

Sulle linee DTMF_D0..3 rimane invece sempre l'ultimo configurazione corretta riconosciuta. La seguente tabella mostra la corrispondenza fra la configurazione dei segnali di uscita con i toni generati da un qualsiasi combinatore telefonico standard¹⁰.

Tasto	DTMF_D3	DTMF_D2	DTMF_D1	DTMF_D0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
0	1	0	1	0
*	1	0	1	1
#	1	1	0	0

Tabella 7 - Configurazioni DTMF

2.6 Sezione Mifare

Sulla scheda è possibile montare sia il modulo ibrido CM200, in posizione U30, sia il modulo maggiore CM500, anch'esso direttamente sul circuito stampato in posizione U29.

Boconsult I.d.S. S.p.A.

9

⁹ Tenere comunque conto che un tono valido può avere una durata di soli 40ms, per cui programmando l'interrupt a livello c'è il rischio di perdere degli eventi, in caso di notevole carico della cpu.

¹⁰ Lo standard DTMF prevede 16 coppie di toni possibili, affiancando ai soliti 12 tasti telefonici anche le lettere A, B, C, D. Poichè, però, nessun telefono è in grado di generare i toni corrispondenti alle lettere, il riconoscimento di tali toni è stato disabilitato.

Nel primo caso è possibile installare anche la relativa antenna (modello ANT-6554-A), sempre sul circuito stampato BT-ECPU. Questa opzione può essere utile nel caso la scheda sia montata direttamente sul retro del pannello frontale dell'applicazione finale.

IMPORTANTE. Per poter utilizzare, invece, il modulo CM500, occorre rispettare alcune limitazioni per quanto riguarda l'alimentazione del sistema. Si veda la nota al paragrafo successivo.

2.7 Sezione di alimentazione

L'alimentatore presente sulla scheda è basato sul regolatore switching National LM2675, che è in grado di fornire una tensione di 5V con una corrente fino ad 1A, a partire da una tensione di ingresso che può arrivare anche a 40V.

A monte del regolatore è presente una cella formata da un ponte raddrizzatore con relativo condensatore di filtro, per cui è possibile alimentare la scheda sia con corrente continua (da 9Vcc fino a 35Vcc), sia con corrente alternata (da 9Vac fino a 24Vac).

Per evitare problemi di ritorni di massa, sono state previste due coppie di morsetti di alimentazione sul connettore CN4, connesse a monte e a valle del raddrizzatore rispettivamente per l'alimentazione in corrente alternata o in continua (vedi paragrafo 4.4).

Qualora si utilizzi il modulo Mifare CM500, connesso in posizione U29, in sostituzione del CM200, è importante notare che l'alimentazione per la sua sezione a radiofrequenza è prelevata direttamente a monte del regolatore, cioè coincide con i morsetti di alimentazione in corrente continua. In questo caso, dunque, è obbligatorio alimentare la scheda per mezzo di una tensione regolata a 12Vcc, utilizzando i morsetti 2-3 di CN4.

3. JUMPER DI CONFIGURAZIONE

Per comodità, nella seguente tabella sono elencati tutti i jumper di configurazione presenti sulla scheda, cioè sia quelli di configurazione software già listati in Tabella 6, sia quelli di configurazione hardware.

Jumper	Funzione
JP1	Attivazione batteria al litio di backup RAM/RTC: Batteria attiva se inserito
JP2	Reset Hardware: Attiva il reset dell'intero sistema se inserito
JP3	Configurazione software: CFGA[0]
JP4	Configurazione software: CFGA[1]
JP5	Configurazione software: CFGA[2]
JP6	Configurazione software: CFGA[3]
JP7	Configurazione software: CFGA[4]
JP8	Configurazione software: CFGA[5]
JP9	Configurazione software: CFGA[6]
JP10	Configurazione software: CFGA[7]
JP11	Configurazione software: CFGB[0]
JP12	Configurazione software: CFGB[1]
JP13	Configurazione software: CFGB[2]
JP14	Configurazione software: CFGB[3]
JP15	Configurazione software: CFGB[4]
JP16	Configurazione RAM (a saldare): 1-2: RAM 128K; 2-3: RAM 512K (default) ¹¹
JP17	Abilitazione WatchDog ¹² (a saldare): 1-2: WatchDog disabilitato; 2-3: WatchDog abilitato (default)
JP18	Attivazione NMI: inserendo il jumper viene attivato l'interrupt.

Tabella 8 - Assegnamento jumper di configurazione

¹¹ Il jumper JP16 permette di connettere al pin 30 di U23 la linea A17 (nel caso di RAM da 4Mbit), oppure un pullup, indispensabile in caso di utilizzo di una RAM da 1Mbit, che ha sul pin 30 il segnale CS2, attivo alto. La linea di indirizzo A18 non richiede commutazioni e risulta permanentemente connessa al pin 1, poichè tale pin non è utilizzato dalla RAM da 1Mbit.

¹² Il circuito di watchdog può essere controllato via software, ma viene automaticamente abilitato al reset del sistema. In fase di debug può essere utile disabilitare "a forza" il watchdog, retriggerandolo con un segnale di clock.

4. CONNETTORI

4.1 CN1: Tastiera BT200/BT350

E' stato previsto un connettore adatto per la tastiera a matrice realizzata per i terminali BT200/BT350. Il tasto dedicato di accensione/spegnimento, che nella tastiera è indipendente dagli altri, risulta connesso alla matrice (riga 1, colonna 5), in modo da poterlo utilizzare anche in questa applicazione come un tasto qualsiasi. La piedinatura del connettore è la seguente:

	CN1: Strip Maschio a 2x7 pin in linea			
Pin	Descrizione	Pin	Descrizione	
1	Riga 0	8	Colonna 4	
2	Riga 1	9	Colonna 5	
3	Riga 2	10	Colonna 6	
4	Colonna 0	11	Colonna 7	
5	Colonna 1	12	N.C.	
6	Colonna 2	13	Power Key (riga 1)	
7	Colonna 3	14	Power Key (colonna 5)	

Tabella 9 - Pinout connettore CN1

4.2 CN2: Display LCD

L'interfaccia elettrica verso il display è a livello TTL, comunque adatta al collegamento con qualsiasi display LCD (a 5V), dotato di controller compatibile HD44780. A partire dalla revisione B della scheda, un apposito convertitore a pompa di carica si occupa di generare la tensione di polarizzazione (Vo) del display, che può dunque variare (tramite il trimmer PT1) fra -5V e +5V, permettendo una grande flessibilità nella scelta del display stesso.

La piedinatura del connettore è riportata nella pagina seguente.

	CN2: Strip Maschio a 2x8 pin			
Pin	Descrizione	Pin	Descrizione	
1	GND	9	D2	
2	Vcc (5.0V)	10	D3	
3	Vo (bias, ±5V)	11	D4	
4	RS	12	D5	
5	WR*	13	D6	
6	EN	14	D7	
7	D0	15	Illuminatore (Anodo)	
8	D1	16	Illuminatore (Catodo)	

Tabella 10 - Pinout connettore CN2

4.3 CN3: Bus di sistema

Il bus dati del microprocessore, otto linee di indirizzo più alcuni segnali di controllo sono stati portati su questo connettore in previsione di future espansioni.

	CN3: Strip Femmina a 2x16 pin				
Pin	Descrizione	Pin	Descrizione		
1	VCC5 (5.0V)	17	D5		
2	RD*	18	D6		
3	WR*	19	D7		
4	CSAUX* (PCS2*)	20	GND		
5	INTAUX (INT3)	21	A3		
6	RESET*	22	A4		
7	DEN*	23	A5		
8	DIR	24	A6		
9	A0	25	A7		
10	A1	26	GND		
11	A2	27	ANAIN0		
12	D0	28	ANAIN1		
13	D1	29	ANAIN2		
14	D2	30	VIN		
15	D3	31	CPUCLK (18.432MHz)		
16	D4	32	CLKSER (3.6864MHz)		

Tabella 11 - Pinout connettore CN3

4.4 CN4: Alimentazione

Per l'alimentazione della scheda sono stati previsti due coppie di morsetti sul connettore CN4. La prima coppia serve per l'alimentazione in corrente alternata, mentre la seconda è da preferire se si alimenta la scheda in corrente continua. In quest'ultimo caso, infatti, viene bypassato il ponte raddrizzatore. In ogni caso, il ramo di alimentazione chiamato VIN corrisponde all'ingresso del regolatore (= tensione di alimentazione in cc).

CN4: AMP MODU-I Maschio Verticale a 4 pin			
Pin	Descrizione		
1	AC IN 1 (9÷24Vac)		
2	CC IN + (9÷35Vcc)		
3	CC IN - (9÷35Vcc)		
4	AC IN 2 (9÷24Vac)		

Tabella 12 - Pinout connettore CN4

4.5 CN5: Ingressi isolati 1..8

Il primo banco di 8 ingressi digitali isolati si attesta su questo connettore. Si noti che ogni banco di 8 ingressi, oltre che essere isolato dalla massa di alimentazione, è anche *isolato rispetto agli altri banchi di ingressi o uscite*. **Per attivare ogni ingresso serve una tensione di 24Vcc**.

CN5: AMP MODU-I Maschio Verticale 10 pin			
Pin	Descrizione ¹³	Pin	Descrizione
1	IN 1 (INA[0])	6	IN 6 (INA[5])
2	IN 2 (INA[1])	7	Chiave di Polarizzazione
3	IN 3 (INA[2])	8	IN 7 (INA[6])
4	IN 4 (INA[3])	9	IN 8 (INA[7])
5	IN 5 (INA[4])	10	Comune, Negativo (COMA)

Tabella 13 - Pinout connettore CN5

4.6 CN6: Ingressi isolati 9..16

Il secondo banco di 8 ingressi digitali isolati si attesta su questo connettore. Si noti che ogni banco di 8 ingressi, oltre che essere isolato dalla massa di alimentazione, è anche *isolato* rispetto agli altri banchi di ingressi o uscite. Per attivare ogni ingresso serve una tensione di 24Vcc.

CN6: AMP MODU-I Maschio Verticale 10 pin			
Pin	Descrizione ¹³	Pin	Descrizione
1	IN 9 (INB[0])	6	IN 14 (INB[5])
2	IN 10 (INB[1])	7	IN 15 (INB[6])
3	IN 11 (INB[2])	8	Chiave di Polarizzazione
4	IN 12 (INB[3])	9	IN 16 (INB[7])
5	IN 13 (INB[4])	10	Comune, Negativo (COMB)

Tabella 14 - Pinout connettore CN6

4.7 CN7: Ingressi isolati 17..24

Il terzo banco di 8 ingressi digitali isolati si attesta su questo connettore. Si noti che ogni banco di 8 ingressi, oltre che essere isolato dalla massa di alimentazione, è anche *isolato rispetto agli altri banchi di ingressi o uscite*. **Per attivare ogni ingresso serve una tensione di 24Vcc**.

	CN7: AMP MODU-I Maschio Verticale 10 pin			
Pin	Descrizione ¹³	Pin	Descrizione	
1	IN 17 (INC[0])	6	IN 22 (INC[5])	
2	IN 18 (INC[1])	7	IN 23 (INC[6])	
3	IN 19 (INC[2])	8	IN 24 (INC[7])	
4	IN 20 (INC[3])	9	Chiave di Polarizzazione	
5	IN 21 (INC[4])	10	Comune, Negativo (COMC)	

Tabella 15 - Pinout connettore CN7

Boconsult I.d.S. S.p.A.

14

¹³ Fra parentesi è riportato il nome del relativo segnale sullo schema elettrico

4.8 CN8: Uscite isolate 1..8

Il primo banco di 8 uscite digitali isolate si attesta su questo connettore. Ogni uscita rappresenta il collettore di un transistor che ha l'emettitore collegato al morsetto GNDEXTA. Ogni uscita ha una portata di 100mA a 35V.

	CN8: AMP MODU-I Maschio Verticale 12 pin			
Pin	Descrizione ¹³	Pin	Descrizione	
1	OUT 1 (OUTA[0])	7	OUT 7 (OUTA[6])	
2	OUT 2 (OUTA[1])	8	OUT 8 (OUTA[7])	
3	OUT 3 (OUTA[2])	9	Chiave di Polarizzazione	
4	OUT 4 (OUTA[3])	10	+V24 EXT	
5	OUT 5 (OUTA[4])	11	GND EXT A	
6	OUT 6 (OUTA[5])	12	GND EXT A	

Tabella 16 - Pinout connettore CN8

4.9 CN9: Uscite isolate 9..16

Il secondo banco di 8 uscite digitali isolate si attesta su questo connettore. Ogni uscita rappresenta il collettore di un transistor che ha l'emettitore collegato al morsetto GNDEXTB. Ogni uscita ha una portata di 100mA a 35V.

CN9: AMP MODU-I Maschio Verticale 12 pin				
Pin	Descrizione ¹³	Pin	Descrizione	
1	OUT 9 (OUTB[0])	7	OUT 15 (OUTB[6])	
2	OUT 10 (OUTB[1])	8	OUT 16 (OUTB[7])	
3	OUT 11 (OUTB[2])	9	+V24 EXT	
4	OUT 12 (OUTB[3])	10	Chiave di Polarizzazione	
5	OUT 13 (OUTB[4])	11	GND EXT B	
6	OUT 14 (OUTB[5])	12	GND EXT B	

Tabella 17 - Pinout connettore CN9

4.10 CN10: Tastiera 4x4

E' stato previsto un secondo connettore per la tastiera, adatto ad una tastiera a matrice standard 4x4. La piedinatura del connettore è la seguente:

	CN10: Strip Maschio a 8 pin a 90°			
Pin	Descrizione	Pin	Descrizione	
1	Riga 0	5	Colonna 1	
2	Riga 1	6	Colonna 2	
3	Riga 2	7	Colonna 3	
4	Riga 3	8	Colonna 4	

Tabella 18 - Pinout connettore CN10

4.11 CN11: Antenna Mifare

L'antenna del modulo Mifare CM200 risulta connessa attraverso questo connettore. L'antenna deve essere di tipo adatto a questo modulo, cioè di tipo "bilanciato". La piedinatura del connettore è la seguente.

CN11: Strip Maschio a 5 pin		
Pin Descrizione		
1	RX1	
2	FANT	
3	FNANT	
4	GND	
5	Non Connesso	

Tabella 19 - Pinout connettore CN11

4.12 CN12: Fissaggio antenna Mifare

Il connettore CN12 (Strip Maschio a 5 pin) non ha alcun collegamento elettrico e serve solo come supporto all'antenna, che risulta quindi fissata solo sui connettori CN11 e CN12, senza altri vincoli meccanici.

4.13 CN13: Ingresso audio

Il segnale audio proveniente dal modem e destinato al decoder DTMF va attestato su questo connettore. Si veda il capitolo 5 per le caratteristiche elettriche.

CN13: AMP MODU-II Maschio Verticale a 2 pin	
Pin	Descrizione
1	Audio IN -
2	Audio IN +

Tabella 20 - Pinout connettore CN13

4.14 CN14: Sistema vivavoce

Su questo connettore è presente l'alimentazione ed il segnale audio proveniente dal modem per il sistema vivavoce. Il segnale audio è lo stesso presente sul connettore CN13. Su CN14 si trova anche un segnale di controllo (a collettore aperto) che permette di abilitare o meno il sistema vivavoce stesso (vedi segnale VVEN*, paragrafo 2.1.6).

CN14: AMP MODU-II Maschio Verticale a 6 pin		
Pin	Descrizione	
1	Audio IN -	
2	Audio IN +	
3	GND	
4	Non Collegato	
5	VVOFF	
6	VIN	

Tabella 21 - Pinout connettore CN14

4.15 CN15: Uscite ausiliarie

Su questo connettore sono riportate alcune uscite ausiliarie **non isolate** per eventuali sviluppi futuri. L'uscita AUXOUT0 è pilotata dall'uscita del Timer 0 della CPU (vedi paragrafo 2.1.4) e può dunque essere utilizzata per comandare, ad esempio, un buzzer esterno.

CN15: AMP MODU-II Maschio Verticale a 8 pin		
Pin	Descrizione	
1	GND	
2	GND	
3	AUXOUT0 (Buzzer)	
4	AUXOUT1	
5	AUXOUT2	
6	Non Collegato	
7	VCC5	
8	VIN	

Tabella 22 - Pinout connettore CN15

4.16 CN16: Porta seriale A

La prima delle due porte seriali a standard RS232 è riportata su questo connettore. Il suo pinout è adatto per l'utilizzo di un cavo piatto verso connettori a crimpare a vaschetta (DCE).

	CN16: Strip Maschio a 2x5 pin		
Pin	Descrizione	Pin	Descrizione
1	Non Connesso	6	RTS
2	DTR ¹⁴	7	Non Connesso
3	TXD	8	Non Connesso
4	CTS	9	GND
5	RXD	10	Non Connesso

Tabella 23 - Pinout connettore CN16

4.17 CN17: Porta seriale B

La seconda porta seriale RS232 è riportata su questo connettore. Il suo pinout è adatto per l'utilizzo di un cavo piatto verso connettori a crimpare a vaschetta (DCE).

CN17: Strip Maschio a 2x5 pin			
Pin	Descrizione	Pin	Descrizione
1	Non Connesso	6	RTS
2	DTR ¹⁴	7	Non Connesso
3	TXD	8	Non Connesso
4	CTS	9	GND
5	RXD	10	Non Connesso

Tabella 24 - Pinout connettore CN17

Boconsult I.d.S. S.p.A.

17

¹⁴Internamente collegato al pin 6 (RTS).

4.18 CN18: Porta seriale di servizio

Su questo connettore sono riportate le due linee relative all'UART interna alla CPU. Il livello di questi segnali è TTL, per cui è necessario un convertitore esterno.

CN13: AMP MTE Maschio Verticale a 4 pin	
Pin Descrizione	
1	VCC5
2	TXD
3	RXD
4	GND

Tabella 25 - Pinout connettore CN18

4.19 CN19: Illuminazione display

Per la retroilluminazione del display LCD è stato previsto anche questo secondo connettore, utile nel caso in cui il display utilizzato abbia, per questa funzione, due pin separati dal connettore dei segnali. I pin 1 e due di questo connettore sono fisicamente collegati, rispettivamente, ai pin 15 e 16 di CN2.

CN19: AMP MODU-II Maschio Verticale a 2 pin	
Pin	Descrizione
1	Anodo (LCDLED_A)
2	Catodo (LCDLED K)

Tabella 26 - Pinout connettore CN19

5. CARATTERISTICHE ELETTRICHE

La seguente tabella riporta i valori rilevati sul prototipo.

Caratteristica	Valore	Condizioni
Alimentazione		
Tensione di alimentazione ¹⁵	8 ÷ 35 Vcc	Ingresso su CN4 pin 2 (+) e 3 (-)
	8 ÷ 24 Vca	Ingresso su CN4 pin 1 (~) e 4 (~)
Corrente assorbita	80 mA	Valim = 12 Vcc, Mifare CM200, display spento
	170 mA	Valim = 12 Vcc, Mifare CM200, display illuminato
	190 mA	Valim = 12 Vcc, Mifare CM500, display spento
	270mA	Valim = 12 Vcc, Mifare CM500, display illuminato
	45 mA	Valim = 24 Vcc, Mifare CM200, display spento
	95 mA	Valim = 24 Vcc, Mifare CM200, display illuminato
Ingressi digitali isolati		
Tensione di ingresso nominale	24 Vcc	
Tensione di ingresso massima	30 Vcc	
Max tensione di ingresso stato Off	11 Vcc	
Min tensione di ingresso stato On	16 Vcc	
Corrente di ingresso	11 mA	Vin = 24 Vcc
	12μΑ	Vin = 11 Vcc
	16mA	Vin = 30 Vcc
Tempo di <i>Turn On</i> (vedi Figura 2)	2.5ms	$Vin = 0 \rightarrow 24Vcc$
Tempo di <i>Turn Off</i> (vedi Figura 3)	3.2ms	$Vin = 24 \rightarrow 0Vcc$
Uscite digitali isolati		
Tensione massima	40 Vcc	
Corrente massima	400mA	Una sola uscita attiva per banco
	100mA	Otto uscite attive per banco
Caduta di tensione	1.0 V max	Corrente di uscita = 100mA
	1.5 V max	Corrente di uscita = 400mA
Tempo di <i>Turn On</i> (vedi Figura 4)	2.5μs	Vout = $24 \rightarrow 0$ Vcc, Rload = 470Ω
Tempo di <i>Turn Off</i> (vedi Figura 5)	95μs	Vout = $0 \rightarrow 24$ Vcc, Rload = 470Ω
Temperatura di funzionamento	0 ÷ 50 °C	

Tabella 27 - Caratteristiche elettriche

¹⁵ In caso di impiego del modulo Mifare CM500, ricordiamo che è **indispensabile** alimentare la scheda esclusivamente con una tensione di 12Vcc stabilizzati.

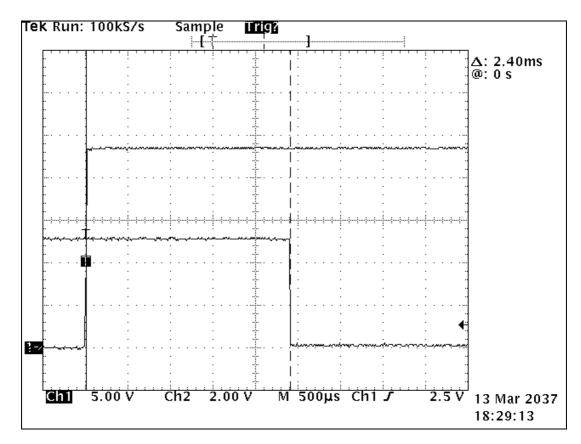


Figura 2 - Ritardo di commutazione ingressi: Turn On. CH1: pin 1 di CN5; CH2: pin 2 di U3

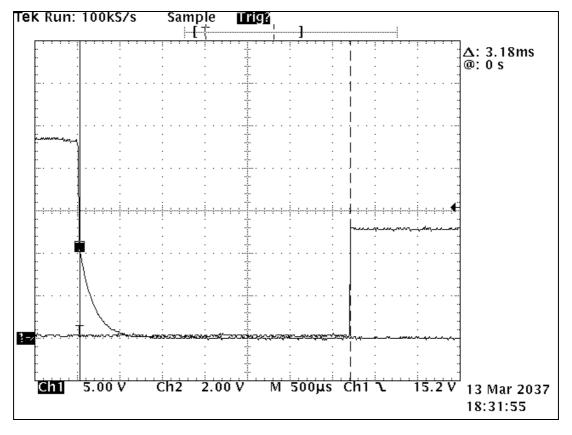


Figura 3 - Ritardo di commutazione ingressi: Turn Off. CH1: pin 1 di CN5; CH2: pin 2 di U3

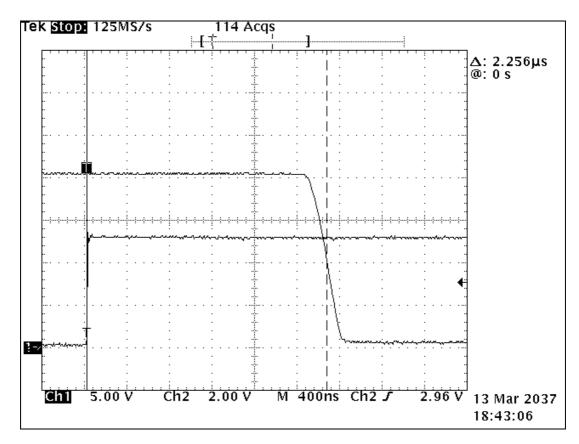


Figura 4 - Ritardo di commutazione uscite: Turn On. CH1: pin 1 di CN8; CH2: pin 5 di U2

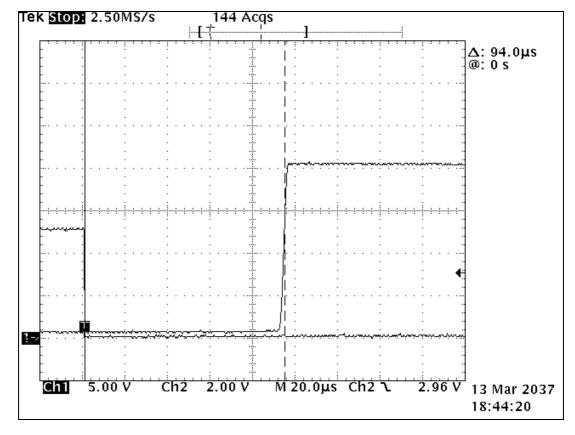


Figura 5 - Ritardo di commutazione uscite: Turn Off. CH1: pin 1 di CN8; CH2: pin 5 di U2

6. SCHEMI DI MONTAGGIO

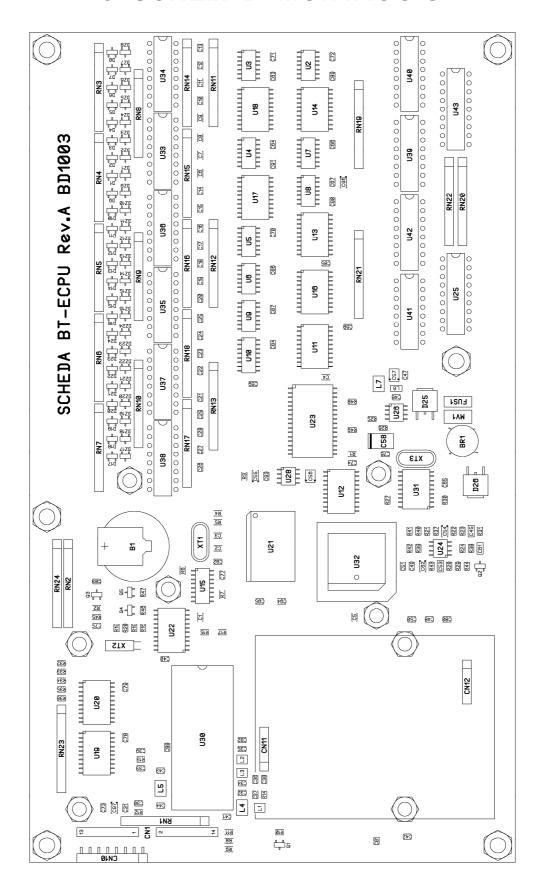


Figura 6 - BT-ECPU-A: Schema di montaggio lato Top

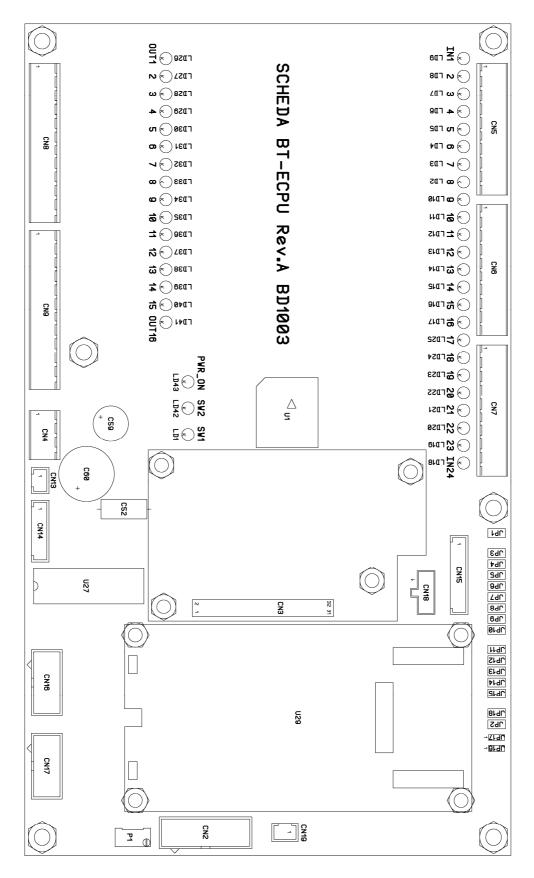


Figura 7 - BT-ECPU-A: Schema di montaggio lato Bottom

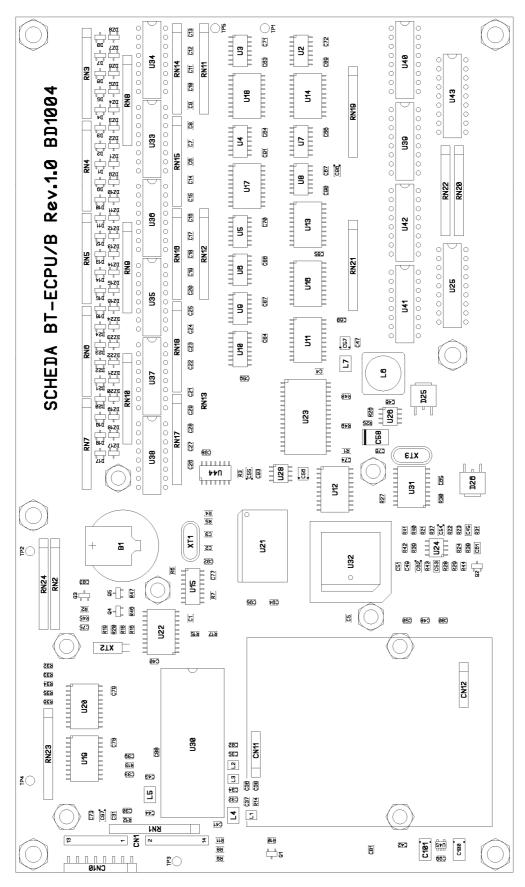


Figura 8 - BT-ECPU-B: Schema di montaggio lato Top

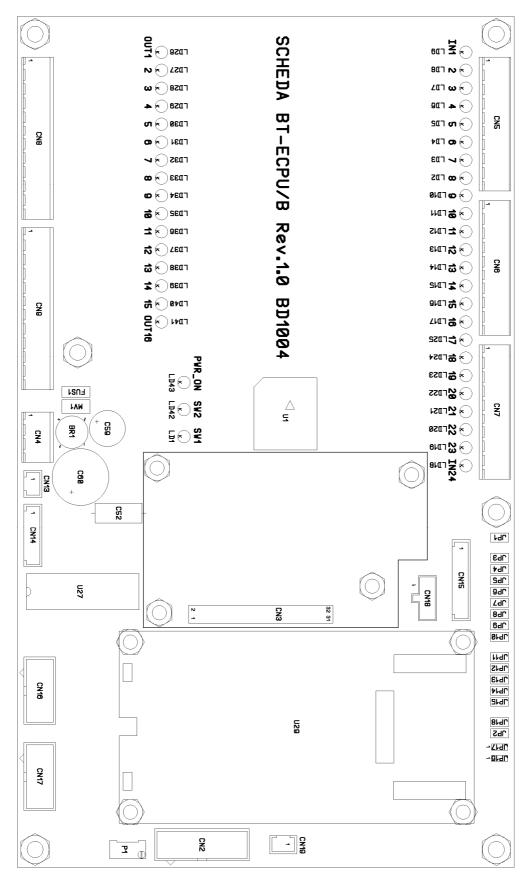


Figura 9 - BT-ECPU-B: Schema di montaggio lato Bottom

NEF 1-10

Codice articolo: 2788977

http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2788977

Filtro di rete per interferenze con piedino universale per il montaggio su NS 32 o NS 35/7,5, corrente nominale: 10 A

Dati commerciali	
GTIN (EAN)	4 017918 072001
sales group	J050
VPE	5 pcs.
Tariffa doganale	85363010
Indicazione pagine catalogo	Pagina 54 (TT-2009)

Note dei prodotti

Conforme alle direttive WEEE/RoHS dal: 18.06.2006

Verificare che i dati qui riportati siano ricavati dal catalogo online. Utilizzare tutte le informazioni e i dati della documentazione per l'utente alla pagina http://www.download.phoenixcontact.it Per il download da Internet, valgono le condizioni generali di utilizzo.

Dati tecnici

Norme

Materiale custodia	PA
Classe di combustibilità a norma UL 94	V2
Colore	nero
Norme per distanze in aria e superficiali	IEC 60664-1: 1992-10
	VDE 0110-1
Grado di protezione	IP20

Esecuzione	Modulo guida monolitico
Tipo di montaggio	Guida di supporto e guida di tipo G
Temperatura ambiente (esercizio)	-25 °C 100 °C (HMF)
Direzione di azione	1L-N & N-PE
Larghezza	38,30 mm
Altezza	85,50 mm
Lunghezza	79,40 mm
Circuito di protezione	
Tensione nominale U _N	240 V AC
Tensione d'esercizio massima U_{max}	264 V AC
Tensione di dimensionamento scaricatore $\ensuremath{U_{\text{C}}}$ (L- $\ensuremath{N})$	264 V AC
Tensione di dimensionamento scaricatore $\ensuremath{\text{U}_{\text{\tiny C}}}$ (L-PE)	264 V AC
Frequenza nominale $f_{\scriptscriptstyle N}$	50 Hz
	60 Hz
Corrente nominale I _N	10 A (40 °C)
Corrente attiva di esercizio I_{c} a U_{c}	≤ 0,25 mA
Corrente conduttori di terra I _{PE}	≤ 0,5 mA
Induttività in serie	2x 1,8 mH (corrente compensata come da norma VDE 0565-2)
Capacità (L-N)	2x 470 nF (X2)
Capacità (L-PE)	2x 2,2 nF (Y2)
Prefusibile necessario massimo	10 A (gL)
Attenuazione d'inserzione aE, simm.	> 80 dB (50 Ω/ 1 MHz)

Alimentazione di corrente collegamento apparecchiatura a freddo

Attenuazione d'inserzione aE, asimm.

Collegamento	Connessione a vite
Tipo di collegamento IN	Morsetti a vite
Tipo di collegamento OUT	Morsetti a vite
Filettatura	M3
Coppia di serraggio	0,8 Nm
Lunghezza di spelatura	8 mm
Sezione conduttore flessibile min.	0,2 mm²
Sezione conduttore flessibile max.	2,5 mm²
Sezione conduttore rigido min.	0,2 mm²

> 40 dB (50 Ω / 1 MHz)

Sezione conduttore rigido max.	4 mm²
Sezione trasversale conduttore AWG/kcmil min.	24
Sezione trasversale conduttore AWG/kcmil max.	12

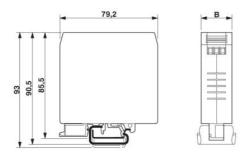
Collegamento circuito di protezione

Norme/Disposizioni	IEC 60939-2		
	DIN EN 60939-2		

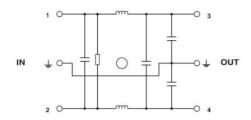
Circuito di protezione filtro

Resistenza di scarico	1 ΜΩ

Omologazioni



Omologazioni


GOST, UL, VDE-PZI

Disegni

Disegno quotato

Schema di collegamento

Indirizzo

PHOENIX CONTACT S.p.A. Via Bellini, 39/41 20095 Cusano Milanino (MI),Italia Tel.: +39 02 660591

Tel.: +39 02 660591 Fax +39 02 66059500 http://www.phoenixcontact.it

© 2011 Phoenix Contact Con riserva di modifiche tecniche.

SQ60-1F range

Control and adjustment

Revision: 3R17.10.02 Sheet: R000801A

Vadj. trimmer

Operating indicators

• Green led Vout OK

Dielectric withstand voltage

• Conform to EN 60950

Isolation

• Output - P.E.: 500Vdc

Comply with

• EN 50081-1

• EN 61000-6-2

• EN 61000-3-2 cl. A

• EN 60950

• CE

Weight 560g

Optional features • SF - Fixing bracket

FEATURES

Input voltage **Output protections** 90÷264Vac • Short circuit protection with automatic restart

Input current • Overcurrent protection 1.2Amax@90Vac • Overvoltage protection

Input frequency

50/60Hz Efficiency

87%typ. Switching operating frequency

100KHz typ.

Input protections

• Inrush current limitation

EMI filter

Line fuses

Leakage current to GND

1mA max at 50Hz

See table for

· Output voltage and current

· Ripple and noise

· Line and load regulation

Operating temperature 0°C to 60°C

Hold up time

Output power

20msec

60W

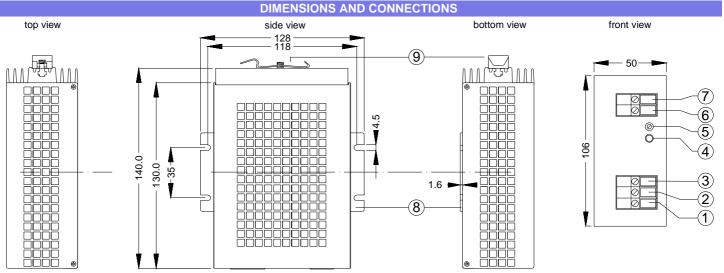
Temperature power derating 2%/°C (50÷60°C see diag.)

Storage temperature

-25°C to 85°C

Temperature drift 0.01%/°C typ.

Long term stability


Better than 1% after 24hours typ.

Cooling

Natural convection

FEATURES TABLE						
MODEL	Vout Volts	lout Ampere	lmin Ampere	Tolerance Line + Load reg. %	Ripple & Noise (0÷20MHz) mV	
SQ63-1F	12	5	0	±3%	<100	
SQ66-1F	24	2.5	0	±3%	<100	
SQ68-1F	48	1.25	0	±3%	<150	

POWER SUPPLY BLOCK DIAGRAM TEMP. DERATING ○Vout+ filter Line M Line f Input 80%Pmax ○Vout-P.E. CONTROL Supply Voltage Optocoupler Control **TOP200** 50 60 °C Module

1)ACinput N 2)ACinput L 3)P.E. 4)LED Vok 5)Vadj. trimmer 6)Vout- 7)Vout+ 8)SF-Fixing Bracket 9)H- DIN track attachment

Tintoretto

DESCRIZIONE

Il BestSeller dei modem ISDN digicom.

Il massimo delle prestazioni e delle funzioni uniti ad un design moderno ed elegante.

Con Tintoretto navigare Internet a 128/64 Kbps in ISDN é più veloce, più sicuro ed affidabile!

Vi collegate ad Internet via ISDN in pochi secondi e i vostri siti preferiti saranno a portata di un click.

I file transfer diventeranno velocissimi; con il compressore standard V.42bis, Tintoretto comprime i vostri dati e li invia molto più rapidamente.

Tintoretto é upgradabile via Flash Eprom per essere sempre aggiornato.

Completo di software Dati/Fax/Segreteria RVS COM Lite, cavo ISDN, cavo seriale universale e driver Windows® e Linux.

Disponibile anche in versione per Macintosh®.

Nota: La versione Macintosh non supporta le funzioni Fax/Segreteria Telefonica.

- Modem ISDN a 64/128 Kbps
- EuroISDN BRI (Accesso base)
- Fax Gr.3 9600/14400 bps
- Segreteria telefonica digitale
- PPP per Internet (64K)
- MLPPP per Internet (128K)
- V.120, V.110
- Si collega alla porta seriale del computer
- Full Active Hardware
- Memoria Flash aggiornabile
- Driver per Windows® ME,2000, 98, 95,
- Driver Ara/OT per Macintosh®
- Software Dati/Fax/Segreteria RVS COM Lite incluso, per la versione Windows®

Le soluzioni ideali per tutte le applicazioni su linee ISDN, sia a casa che in ufficio, progettati e realizzati per garantirvi le massime prestazioni a 128/64 Kbit/s.

IL PRESENTE DOCUMENTO E' SOGGETTO A VARIAZIONI SENZA PREAVVISO. Tutte

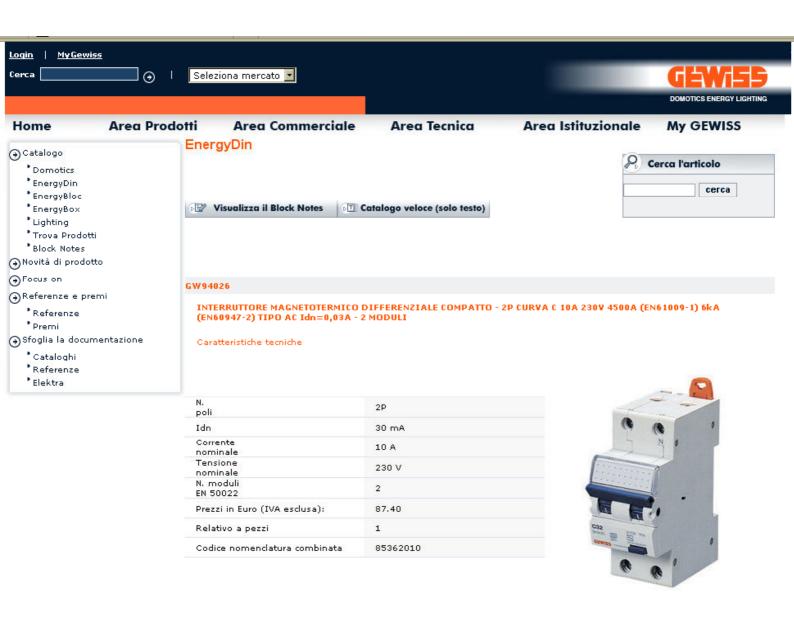
Compact

- Flat design
- High air through-flow
- **Temperature safety cut-out**
- **Clip fixing**

The compact high-performance fan heater prevents formation of condensation in control or switch systems and provides an evenly distributed interior air temperature in enclosures. This fan heater is available without fan (HV 031) as well as with fan (HVL 031).

Technical Data

HV 031 Heater without fan (fan mounting kit included) HVL 031 Heater with fan Heating element high performance cartridge Temperature safety cut-out to protect against overheating in case of fan failure, automatic reset Heater body die-cast aluminium (glass bead blasted) Connection 3-pole screw connector 2.5mm², clamping torque 0.8Nm ma Connection casing plastic according to UL94 V-0, black
Heating element high performance cartridge Temperature safety cut-out to protect against overheating in case of fan failure, automatic reset Heater body die-cast aluminium (glass bead blasted) Connection 3-pole screw connector 2.5mm², clamping torque 0.8Nm ma
Temperature safety cut-out to protect against overheating in case of fan failure, automatic reset Heater body die-cast aluminium (glass bead blasted) Connection 3-pole screw connector 2.5mm², clamping torque 0.8Nm ma
automatic reset Heater body die-cast aluminium (glass bead blasted) Connection 3-pole screw connector 2.5mm², clamping torque 0.8Nm ma
Heater body die-cast aluminium (glass bead blasted) Connection 3-pole screw connector 2.5mm², clamping torque 0.8Nm ma
Connection 3-pole screw connector 2.5mm², clamping torque 0.8Nm ma
o pero commente y company of the com
Connection casing plastic according to UL94 V-O, black
,
Mounting clip for 35mm DIN rail, EN 60715
Fitting position vertical airflow (air outlet up)
Operating / Storage temperature $-45 \text{ to } +70 ^{\circ}\text{C} (-49 \text{ to } +158 ^{\circ}\text{F})$
Operating / Storage humidity max. 90 % RH (non-condensing)
Protection type / Protection class IP20 / I (earthed)
Approvals UL File No. E187294 (230V only: VDE)
HVL 031 only:
Axial fan, ball bearing airflow see table
service life 50,000h at 25°C (77°F)
Connection (axial fan) 2-pole screw connector 2.5mm² (L2/N2)



Important! Heater may only be operated together with fan. Danger of overheating!

71,5	042 08 08	25 22
104.8	a.) Clip b.) Type plate c.) Axial fan d.) Air direction	25 22 22 25 22 25 25 22 25 25 25 25 25 2

Art. No. HV 031 230VAC, 50/60Hz	Art. No. HV 031 120VAC, 50/60Hz	Heating capacity	Pre-fuse T (time-delay) 230VAC / 120VAC	Dimensions	Weight (approx.)
03100.0-00 🔬	03100.9-00	100W	1A / 1.4A	80 x 112 x 22mm	0.4kg
03101.0-00 🚲	03101.9-00	150W	1.25A / 2A	80 x 112 x 22mm	0.4kg
03110.0-00 📤	03110.9-00	200W	1.4A / 2.5A	119 x 151 x 22mm	0.5kg
03111.0-00 📤	03111.9-00	300W	2A / 4A	119 x 151 x 22mm	0.5kg
03112.0-00	03112.9-00	400W	4A / 5A	119 x 151 x 22mm	0.5kg

Art. No. HVL 031 230VAC, 50/60Hz	Art. No. HVL 031 120VAC, 50/60Hz	Heating capacity	Pre-fuse T (time-delay) 230VAC / 120VAC	Airflow min., free flow	Dimensions	Weight (approx.)
03102.0-00 📤	03102.9-00	100W	1A / 1.4A	35m³/h	80 x 112 x 47mm	0.6kg
03103.0-00 📤	03103.9-00	150W	1.25A / 2A	35m³/h	80 x 112 x 47mm	0.6kg
03113.0-00 📤	03113.9-00	200W	1.4A / 2.5A	108m³/h	119 x 151 x 47mm	0.9kg
03114.0-00 📤	03114.9-00	300W	2A / 4A	108m³/h	119 x 151 x 47mm	0.9kg
03115.0-00 📤	03115.9-00	400W	4A / 5A	108m³/h	119 x 151 x 47mm	0.9kg

Manuale istruzioni (118 Kb)

<u>}-</u>

Norme di riferimento

Cliccando sulla norma si accede alle informazioni di dettaglio aggiornate direttamente sul sito CEI che ringraziamo per la collaborazione.

CEI EN 61009-1 - Interruttori differenziali con sganciatori di sovracorrente incorpo rati per installazioni domestiche e similari. Parte 1: Prescrizioni ge neralI